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ABSTRACT

A new class of tests that can be viewed as a generalization of Neyman's
optimal C{a) test is introduced. An optimally robust test which maximizes
the asymptotic power within this class, subject to a bounded influence
function, is selected. It is shown that it is equivalent to a certain
asymptotically minimax test proposed by Wang (1981). Finally, some numerical
results on the asymptotic behaviour of robust C(a)-type tests under several
errors’ and carriers’ distributions are discussed.
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1. INTRODUCTION

Let {(xi.yi) : i=1 ,..., n} be a sequence of independent identical
distributed random variables such that

¥y = er +e;, i=1 ,..., N, (1.1)

where Y; is the ith observ;tion, xieRp is the ith row (written as a
column vector) of the design matrix, 6 e oC R’ a p-vector of unknown
parameters and eiel! the ith error. Suppose that ey is independent of
x; and is distributed according to a normal N(O.az) . Moreover, denote
by K(x) the distribution of the x's with respect to some o-finite
measure u and by Fe(x.y) the joint distribution of (xi.yi) .

In the classical parametric approach, there are several procedures
one can use for subhypothesis testing: the F-test, which is equivalent
to the likelihood ratio test, the Wald test and the C(a) test.
These tests are asymptotically equivalent and, when the errors are normally
distributed, they are optimal; see, for instance, Cox and Hinkley (1974).
However, these test procedures suffer similar robustness problems as the
least squares estimators. Although they are moderately robust with respect
to the level, they do lose power rapidly in the presence of small departures
from the normality assumption on the errors; cf. Hampel (1973, 1978), Schrader
and Hettmansperger (1980). Robust alternatives to the F-test and the Wald
test have been investigated recently by Schrader and McKean (1977), Schrader
and Hettmansperger (1980) and Ronchetti (1982a, 1982b, 1984).

v




In this paper we focus on the class of C(a) tests. In section 2
we define a new class of tests which generalizes the optimal C(a) tests
introduced by Neyman (1958, 1979). In section 3 we investigate their
robustness properties by means of the influence function and we compute
their asymptotic power. This allows us to select the optimally robust
C(a)-type test, that is a test which maximizes the asymptotic power
within this new class (efficiency condition), subject to a bounded
influence function of the test statistic (robustness requirement). In
section 4 we show the equivalence between our optimally robust C(a)-type
test and an asymptotically minimax test introduced by Wang (1981). This
points out the strong relation between the minimax approach and our
approach to robust testing. Finally, section 5 presents some numerical
results on the asymptotic behaviour of C{a)-type tests under several

distributions of the errors and of the carriers.
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2. C(a)-TYPE TESTS

Consider the regression model (1.1). Though C(a) tests can be defined
for testing more than one linear hypothesis on 6 (see Biilhler and Puri,
1966), we focus here on the generalization of Neyman's original definition
(see Neyman, 1958), that is we shall introduce a new class of procedures

for testing
Hy : olP) = g (2.1)

where e(j) denotes the jth component of the vector 6 . For a given
p-vector x , we denote by x(l) its "nuisance part", that is

X(1) * (x(l).....x(p'l))T and by X(2) its last component x(p) .
Moreover, let x = (x{l),O)T . We denote by M(ll) ’ M(lZ) , M(Zl) . "(22)
the submatrices of a (p-1)x1 partition of a pxp matrix M . Note

that “(22) is simply m__ , the (p,p) component of M .

pp
The class of tests we shall define is based on a function

n: R x R+R , (x,r) » n(x,r) ,

which satisfies the following conditions:

(2.TA1) (1) n(x,-) 1s continuous and odd for all x € RP ,
(1) n(x,r) >0 forall xeR ,re R

(2.ETA2) n(x,*) 1s differentiable on R\D(x;n) for all x € RrP ,
where D(x;n) 1s a finite set.
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Let n'(x,r) := (3/3 r)n(x,r) if xeRP , reR\D (x;n)
=0 otherwise,

and assume:

suprln'(x.r)l <w for all xeRP .

We shall also assume the following regularity condition:

(2.ETA3) M := l-:n'(x,r)xx.r exists and is nonsingular.

Definition 2.1 The class of C(a)-type tests for linear models is defined

by means of the test statistics

. g n T~ -1
Z,(8in) :=n ;51E1 nlxgs(y3-xj8)/0)- (1) ) (2.2)

n
=n ;ﬁup; 12 n(xi’(yi"xie)/O) [x,(i )-U(ZI)'Uzil)(xi)(l)]

where n satisfies the conditions (2. ETA1), (2.ETA2) and U 1is the lower

T

triangular matrix with positive diagonal elements such that UU =M . "lLarge"

values of Zn are significant.

Remark 1. C(a} tests were introduced by Neyman (1958) for a general parametric
model and extended to the robust testing problem by Wang (1981, Remarks 2 and
3, p. 1100) who was able to derive an (asymptotically minimax) robust version
of the optimal C(a) test. We shall discuss the connections with this test

in section 4. If we put n(x,r) = -¢'(r)/é(r) =r 'in (2.2), where ¢

is the standard normal density (the density of the error's distribution), Zn
becomes the test statistic of the optimal C(a) test obtained by Neyman (1958,

p. 228). In this sense the tests defined by (2.2) can be called C(a)-type tests.

'
-



Remark 2. The test statistic Zn depends on the unknown nuisance parameters
e(l).....e(p'l) and on the scale parameter o . In section 3 we shall
discuss the properties of a studentized version of Zn . From now on we

assume for simplicity o=1.

Remark 3. In order to determine asymptotic critical regions of the test,

we shall compute the asymptotic distribution of Zn in section 3.
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3. OPTIMALLY ROBUST C(a)-TYPE TESTS

In this section we investigate the robustness properties of C(a)-type
tests by means of the influence function and we select the optimally robust
test in this class. This is a test that maximizes the asymptotic power within
the class of C(a)-type test, subject to a bounded influence function.

The notion of influence function for estimators was introduced by
Hampel (1968, 1974). It is essentially the first derivative of an estimator
viewed as functional, and describes the normalized influence of an infinitesimal
observation on the estimator. Formally, suppose the estimator Tn can be
written as functional T of the empirical distribution function F(") ,

Tn = T(F(")) . Then the influence function of T at F is given by
IF(z2;T,F) = 11m€¢0(T((1-e)F+e62) - T(F))/e , (3.1)

where &, is the distribution that puts mass 1 at the point z . It is
then clear that, from a robustness point of view, boundedness is a desirable
property of IF.

The concept of influence function has been extended to tests by Rousseeuw
and the author, and independently by Lambert; see Ronchetti (1979, 1982a);
Rousseeuw and Ronchetti (1979, 1981); Hampel, Ronchetti, Rousseeuw, Stahel
(1984); Lambert (1981). It turns out that the influence function defined on
the test statistic is proportional to the 1nf1uence.of an infinitesimal observa-
tion on the level and on the power (or, as in Lamber (1981), on the P-value)
of the test. Therefore, a test statistic with a bounded influence function

guarantees robustness of validity and robustness of efficiency for the test.




Let us now compute the influence function of our C(a)-type tests. let Z

be the functional corresponding to the test statistic Zn » that is
2(F) =rnx.y-x"8)- (U"1x) Plar(x,y) .

Then Z(F(")) = n'*Zn » where F(") is the empirical distribution function.

Proposition 3.1 Let Fé be the model distribution under the null hypothesis.
If (2.ETA1) and (2.ETA2) hold, the influence function of Z 1is given by

IF(x,y32,Fg) = n(x,y-x'8)-(u1x)(P) (3.2)

Proof. The result follows easily applying the definition (3.1) to Z and
noting that by (2.ETAl) (i) En(x,r)x =0 .

From (3.2) we see that Neyman's optimal C(a) test (n(x,r) = r) , though
asymptotically efficient, has an unbounded influence function. Our goal will
be to compromise between efficiency and robustness within the class of
C{a)-type tests by finding a test that maximizes the asymptotic power, under
a bound on the influence function. Let us now compute the asymptotic power

of a C{a)-type test defined by n .

Proposition 3.2 Besides (2.ETAl), (2.ETA2) and (2.ETA3) assume

(3.A53) En(x,r)xfZ < = , 1
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where |.] denotes the Euclidean norm. Put Ap i Enz(x.r)-I(U'lx)(p)l2 .

Then, under the sequence of alternatives
a -
: = + 9 -

where A = (0,...,0.A(p))T ’
the test statistic Zn has asymptotically a normal distribution with mean

A(p) and variance 2 Moreover, the asymptotic power of the

Ypp’ p°
C{a)-type test at the level o defined by Z, fis given by

1 - o(071(1-a) -_A(p)-upp/A;f) ,

where & is the cumulative standard normal.

Proof. It suffices to compute EgZ ~under the sequence (3.3). Define:
§(0) = Snlay-xT8)- (1) (Pof (xy)-aulxay

where fe(x.y) = ¢(y-xTe)°k(x) . Then, for j =1,...,p-1 , we have

t(a/aeeco)3g = -t (xoy-xT80x ) (0 2y (Parz (x,y)
(3.4)

+ fn(x.y-xTB)-(U'lx)(p)-[(a/ae(j))fe(x.y)lgdu(x)dy .

e




Using

~1 -1, -1
WP w2 o iy

we get

En'(x.r)x'r

1

.
P

“.
P

and the first term of the right hand side of (3.4) vanishes.

1

“(

°(

< (u~L, (P
(1) (70 P .

(3.5)

- el
U(20)"Pan) "B T x g Xy 4 Bt xm gy x(P)) -

(1)*

- L —1 ® [ ] T T
Y21°%(11)*Y11) *V(21y * Mi12)) =0, ‘

In a similar

way one can prove that also the second term of the right hand side of (3.4)

equals 0. Moreover,

(as36 Py g1 =

Intx,y-x78) + (0710 PV e 12700 Py £ (x,y) 1gau () gy =

En(x,r) s (U 1x) P)epex(P) o

and by integrating by parts,

En' (x,1)« (U 1x) PV (P)

u.
P

1.
P

(

- vl .
Y21 Ya1)Maz) * M) =

-1, 2
u
op (Upp

)

(3.7)

= -

pP

TPV VORI




e

10

Finally, denoting by a dot the differentiation with respect to 6 , we obtain

(8813 a0 , for j=1,...,p-1 (3.8)

@ - u (3.9)
and by (2.ETA1) (1)

£(6) =0 .
Therefore, using a Taylor expansion we get

E 2, = nt/2g(0) = nl/2E%(8)+ (6~5) + o(]]6-F|])

(p) -1/2)

=u A + o(n

PP

This completes the proof.

Remark 1. The test defined by the test statistic Zn depends on the unknown
nuisance parameter 5 . By techniques similar to those used by Wang (1981)
one can show that the result of Proposition 3.2 holds if we substitute 6

by a suitable (n%-coﬁgistent) estimate Tn (see Wang, 1981, p. 1099).
Moreover, the result of Proposition 3.1 still holds. To see this, suppose

that the influence function of T exists and define

2(F) = snlxay-x"-T(F))* (U 1) Plr(x,y) .

S e e e

SV




Then,

IF(x,y:;2,Fg) = [(3/3e)Z((1~€)Fg + es(x'y))]e_o (3.10)

= n(x,y-x18) * (U 2x) (P) 4 [n(s,v-8T8) - (U™ 15) (P) arg(s,v) -

-(!n'(s.v—srg)'(v.ll)(p)°;TdF§(s,v))°IF(x,y;T ' Fg) .

Now the second term of the right hand side of (3.10) is equal 0 in view
of (3.5) and (2.ETAl) (i), and so is the third term by (3.6).
The next Proposition gives the optimally robust C(a)-type test.

Proposition 3.3 Under (2.ETAl), (2.ETA2), (2.ETA3), (3.AS3), the test which
maximizes the asymptotic power within the class of C(a)-type tests, subject

to a bounded influence function, is defined by

-1
ngtxar) = (2P| g (el < wc/lz(P)l(r) '

where z = Ualx » Uy is the lower triangular matrix defined implicitly by

the matrix equation
E(Zo(c/lz(p)l)-l)zzT =1,

wc(t) = min(c,max(t,-c)) 1s the Huber y-function, and ¢ is a given positive

constant depending on the bound on the influence function.

o

—h o aa
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According to Proposition 3.1 and 3.2 we have to maximize uﬁplxp » Subject
to a bound on the right hand side of (3.2). The same problem has been solved
in Ronchetti (1984; Theorem 4.3) in connection with the class of so-called
1-tests. Therefore we refer to that paper for the complete proof; cf. also

Ronchetti (1982a, Theorem 3).




4. CONNECTION WITH AN ASYMPTOTICALLY MINIMAX TEST

In this section we describe the connections between the optimally robust
C{a)-type test and a test introduced by Wang (1981). Wang studies the testing
problem using minimax techniques. He considers the following situation.

Suppose we are given a parametric model {Feze e® C RP} and suppose
we want to test a hypothesis on one component of the parameter 6 , say
e(p) = 0 , the other (p-1) components being nuisance parameters. Then,
using the technique of shrinking neighbourhoods, Wang is able to derive an
asymptotically minimax test in the case, where the model distribution is
indexed by nuisance parameters. Let us write this result in the situation

of the linear model. Define:

r = Y"‘Tg v & := (au).....a(p))T '
- x(P) 4aT . x(P) 4 gP-1 (3 (5)
A(.(l) '3') = A*(X:Y;a(l) '.6’ = rod(x'a(l)) . (4.1)

For a given ¢ > 0 , §, > 0 , define vb(a(l),a) and vi(a(l)'g)
implicitly by means of the equations

z[max{(A(l(l).O) - Vi(a(l,.e)),O}] - e/61 (4.2)
Moreover, let 8y = u(l)(ﬁ) be the solution to the equation

Vi(ag 9

E((A(a,y,.6)] Ty * XX, =0, (4.4)
(1) " Vg (a gy .8) (1)

and define
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2~ ~
ve(e) := E([A(a(l).e)lvo(u(l)’e))2

(4.5)

Proposition 4.1 (Wang, 1981, p. 1099, p. 1104) The test defined by the

critical region
1¥y(8) > 71 (1-0) + eV (ay) (B).BIVEY (4.6)

where

5) i (B b Oy s (8520 B00E)
RO IONSS Y (x,i,yi,a(l)(e),e)]vo(u(li’e) :

is an asymptotically minimax test at level a .
The test defined by (4.6) wil) be called Wang test. In order to have

a better performance at the model, Wang (1981, p. 1105) proposes a modification

of the test (4.6) and defines a test by means of the following critical region
v, (8) 267 (1-a)3 (8.7)

The test defined by (4.7) will be called modified Wang test. Then we have
the following result.

Proposition 4.2 The modified Wang test is a C(a)-type test. It is equivalent

to the optimally robust C(a)-type test defined by ng (given by Proposition 3.3).
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Proof. We prove that Yn(a) = Agk (no)-zn(a;no) . First, consider
equation (4.4). Using (4.1) we have

i

v
- ooo [ .
0 E‘[AJVb r x(l)) E(lr d]vo°r-x(1))

= [ d(x,a,,,)°x '(]ltlvi/ldl-rdo(r))dk( )
(1 ’°*q) vy/lal x)

and (4.4) becomes

. : dK(x) =0 .
J(ev,/1aix.a ) D=0 (Vp/1d(x,0(q)) D -atxie))* ()

(4.8)_
Now, combining (4.2) and (4.3) and noting that EA = 0 , we obtain
I(A-vl)-1{sz1} + I‘A’Vo"l{Asvo} =0,
and performing these integrations we get finally by (4.8)
V0 = -V (=: -V) . (4.9)

For a given positive constant ¢ , define o and Uy as in Propnsition 3.3.

Moreover, choose

V= c-(Uo)pp . (4.10)

Al
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Then

T -1
a(q) = ~(Ug)(21) (V) (11))
and

-1
d(X,Q(l)) = x(p)‘(uo)(ZI)'((Uo)(ll)) x(l)

= (Ualx)(p).(uo)pp .
(The 1eft member of (4.8) becomes

st(zo(c/|(u51x)(p)l)-1)~(u51x)(p)-(uo)pp-x(1)1
= teng(xsr)-WUgh PYox 13- (Ug) = 0 by (3.6) )
Moreover, by (4.5), (4.9), (4.10) and (4.12) we have
36>-mu¢ﬁ$2-m8mmu“w@M”n,

2 2
= (U E(y (r).|2(P) 2

2 . (ng)

= (Ug)ppip

(4.11)

(4.12)

(4.13) #




| -}

N\
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where
z(p) = (Ualx)(p) and Ap(no) = Eng(x,r)-lz(p)l2 .

Finally we get

-1/2, /2, y=log B a4V
((Ug) oA/ “ng ) ™her, 2 (rea) 2y

o'pp"p
-1/2_,-1/
P

!n(e) = n

-1, .z(P),
) (rez (Uo)pp)

2 .+ N
o am1/2,,°1/2, .. n s (P)
n Ap (no) zi_lwc(: 2 )

(p)

-1/2 ,~-1/2 n
n P ()T, ¥ (r) -2
P 0 i=] c/'z(P)l

o/ mg ez, (Bingy

This completes the proof.

Proposition 4.3 The Wang test is always less efficient at the model than

the modified Wang test.

Proof. The modified Wang procedure has the same asymptotic power as the

optimal robust C(a)-type test defined by ng - Therefore, the square of

2
its efficacy equals (Uo)pp/Ap(no) .




[ 3]
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On the other hand, the square of the efficacy of the Wang test is given : {

by the formula (see Wang, 1981, p. 1104)

s2(3) = (v(B) - (e/6))*(-VI/V(EN? .

Thus, the relative efficiency of the Wang test with respect to the modified

Wang test can be computed as

eff{Wang test, modified Wang test} = 52(5)/((U0)§p/Ap(no))

hence, using (4.10) and (4.13)

12y .
0 PP
A/ (ng) +(e/8y) ce0 (W pp’ O e

- (v
lkp(no)/ 2 2
[(up -x;/ (ng))}

Up
PP
X 2
= O ng) (/80 /18 )

Using (4.2) we get finally

eff{Wang test, modified Want test}

= 1-c%er(1 2P re) 0t (er 2Py -oteer (2P 1. 4

This completes the proof.

—— " a - Y



5. ASYMPTOTIC BEHAVIOUR

In this section we present some numerical results on the asymptotic
behaviour of C(a)-type tests under several distributions. In the exposi-
tion we apply the methods which have been used by Maronna, Bustos and Yohai
(1979) for comparing different regression estimators. We consider simple
regresssion:

y= X' + e ,

where x = (l.x(z))T s 0= (9(1) , 9(2))T .

We want to test the hypothesis
. a2) .
Ho : 0 0.

Let 6 and K be the distributions of e and x(z) » respectively.

For x(2) and e we choose the following contaminated normal distributions
(1-€)o(-) + eo(*/s)
with the following parameters

e: 0 0.1 0.1 0.05
s: 1 3 5 10 .

VWL
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We want to compare the asymptotic behaviour of the optimally robust C(a)-type
test (see Proposition 3.3)

no(x.r) = wc1/|z(2) I (r)

with that of another C(a)-type test with bounded influence function, namely

ny(x,r) = wcz(lz(z)l)wc3(r) : (5.1)

where Hc(ltl) = Y. (t)/t = min(l,c/|t]) . The C(a)-type test defined
by (5.1) is the solution of the optimality problem considered in Proposition
3.3 within the restricted class of functions n satisfying n(x,r) = w(x)-y(r) ;
see Ronchetti (1982b). The subscript "M" reminds that iy is a function of
Mallows' form.

In order to investigate the behaviour of a C(a)-type test defined by

2 "redescending" n-function, we consider also the following procedure:
( = (2),,. (r; * c..A..B
fm x,r) Wc4(|2 l) '] r’CSQK ’Cso 5° 5) ’

where ¢ 1is defined by

¢(r365.|<*.c6.A5.85) =r if0< |r| < CG
= a-tanh[8(cg-|r|)Isign(r) ¢S [r| < ¢
=0 cs< Ir|




a= (AS(K*-I))ls » B = ((K*-I)BglAs)klz . The function ¢ defines the
socalled "hyperbolic tangent estimator" for location; see Hampel, Rousseeuw,
Ronchetti (1981). Note that c5.A5,85 are computed implicitly in terms of
CS and x* ., .

For each test we compute the standardized sensitivities at the normal
model
(2)|

-1
u22-supx’r|n(x,r)|-|z
and the efficacies
2
Uza/ Az
under several distributions.
Note that the efficacy of the tests defined by u" and T factorizes;
in these cases we have
u2 /A, = DX*DR
22" "2 ’

where DX depends only on w. and K and DR=82/A , with A = Ewi » B = Ewé .

c
The constants are chosen so that all the tests have the same asymptotic
efficiency, when x(z) ~ N(0,1) and e ~ N(0O,1) . 1

Table 1 describes the calibration as well as the standardized sensitivities

of the tests. From Table 2 one can obtain the following conclusions:
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1) T is better than ™ for all distributions under consideration;

2) U is better than Tyy When the distribution of the errors has
moderate tails;

3) Ny has the better standardized sensitivities (computed at the normal
model).

Table 3 gives the factors for the Ty~ and nm.-test.
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b . Table 2: Asymptotic efficacies

] e=0 €= ,1 €= ,1 ¢= ,05 ST.SENS,
s=1 =3 s=5 8=10

K TEST

€=0

s=1 . . ¢85 . 425 471 .80 3,16

C M 95 77 W77 87 3,37

" W05 7B o72 7B 2.87

e= .1

s=3
oy 1452 1,21 1.13  1.28 2.70
- 1053 1.23 1.23 1,40 2.91
n, 1.54  1.27 1.16 1.25 2.34

€= .1

s=5
Ny 2.44 1.84 1.81 2.04 2.33
Nyr 2,48 1,97 1.87 2,28 .  2.51
N 2.51 2,06 1.86 2.00 1.94

€= 05 0

selo n, 2,89 238 2,23 2.51 2.23
Ny 3.00 2,42 2.42 2,76 2.38

o 3.24 2,61 2;32 2,50 1.85




Table 3:

Factorization for

€0
s=]l

«870
«973

«979

CLIPY | €" .l

s=3 8=5
R

"e?71 ‘o722

«785 «785
DX

1,569 2.512

“u' and nur—test

€= .05
s=10

«814
« 0894

3.087







